Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 192-201, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37966049

RESUMO

A series of halogen-substitute carbazole TTM radicals was synthesized. The effect of halogen substituents on radical luminescence was systematically evaluated. It was found that the well-known heavy atom effect does not work in the emission of radicals and that halogen substitution of the donor carbazole can change the HOMO and alter the absorption and emission wavelengths. In addition, the photostability was found to be improved with respect to TTM but not significantly different from that of closed-shell fluorescent molecules.

2.
Sci Rep ; 13(1): 19402, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938644

RESUMO

Spontaneous orientation polarization (SOP) is macroscopic electric polarization that is attributed to a constant orientational degree of dipole moments of polar molecules on average. The phenomenon has been found in small molecules like H2O at low temperatures and π-conjugated molecules employed in organic light-emitting diodes. In this study, we demonstrate that a thin film of baicalein, a flavonoid compound found in natural products, exhibits SOP and resultant giant surface potential (GSP) exceeding 5500 mV at a film thickness of 100 nm. Vacuum-deposition of baicalein under high vacuum results in smooth and amorphous films, which enables the generation of GSP with a slope of 57 mV/nm in air, a value comparable to the representative of an organic semiconductor showing GSP, tris(8-hydroxyquinoline)aluminum(III) (Alq3). We also found the superior photostability of a baicalein film compared to an Alq3 film. These findings highlight the potential of baicalein in new applications to organic electronics.

3.
Nanomaterials (Basel) ; 13(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836347

RESUMO

Laser-induced functionalization using excimer laser irradiation has been widely applied to transparent conductive oxide films. However, exploring suitable irradiation conditions is time-consuming and cost-ineffective as there are numerous routine film fabrication and analytical processes. Thus, we herein explored a real-time monitoring technique of the laser-induced functionalization of transparent conductive oxide films. We developed two types of monitoring apparatus, electrical and optical, and applied them to magnetron-sputtered, Sn-doped In2O3 films grown on glass substrates and hydrogen-doped In2O3 films on glass or plastic substrates using a picosecond Nd:YAG pulsed laser. Both techniques could monitor the functionalization from a change in the properties of the films on glass substrates via laser irradiation, but electrical measurement was unsuitable for the plastic samples because of a laser-induced degradation of the underlying plastic substrate, which harmed proper electrical contact. Instead, we proposed that the optical properties in the near-infrared region are more suitable for monitoring. The changes in the optical properties were successfully detected visually in real-time by using an InGaAs near-infrared camera.

5.
Angew Chem Int Ed Engl ; 62(28): e202302550, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36951925

RESUMO

A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure-property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627 nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.

6.
Chem Commun (Camb) ; 58(97): 13443-13446, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36373670

RESUMO

Stable organic luminescent radicals have attracted much attention, but their stability under light irradiation is not yet satisfactory. New luminescent radicals (TTMs) based on terminal benzene ring modified carbazole donors were synthesized and evaluated. Their photostability (half-life under continuous laser irradiation) has improved by 1 order of magnitude compared to simple carbazole donors. This is a new molecular design strategy to improve the photostability of luminescent radicals without reducing other photophysical properties.

7.
Phys Chem Chem Phys ; 24(29): 17504-17515, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35838187

RESUMO

Thin films of graphitic carbon nitride (g-CN), a visible-light-driven photocatalyst, have recently attracted interest for application in photoelectrochemical cells for water splitting and high-throughput photocatalysis. In typical syntheses, g-CN films are formed by heating the nitrogen-rich precursor and substrate to 500-600 °C. The heated substrate should affect the polycondensation of the precursor and thereby alter the properties of the g-CN film. In this paper, we demonstrate that soda-lime glass, such as commercial glass slides, modifies the chemical structure of g-CN. The terminal amino groups of g-CN are partially substituted with cyanamide and hydroxyl groups. The electron-withdrawing groups provide the energy offsets of the frontier orbitals between the modified and unmodified molecules, facilitating exciton dissociation. After alkali metals are removed, the modified g-CN film exhibits a faster photodegradation of methyl orange compared with a melon film. The simple protocol to activate a g-CN film without co-catalysts paves a new way to enhance photocatalytic activity via selections of substrates, including waste glass.

8.
J Am Soc Mass Spectrom ; 33(6): 1011-1021, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587880

RESUMO

Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) with a reducing matrix is believed to be initiated by hydrogen transfer from the matrix to the peptide. Several new matrices have recently been developed to achieve more efficient MALDI-ISD. In particular, the use of matrices containing aniline groups facilitates MALDI-ISD to a greater extent than that of matrices containing phenol groups, although the N-H bond in aniline is stronger than the O-H bond in phenol. In this study, photoelectron yield spectroscopy of matrix solids revealed that conversion of the phenol group to the aniline group decreased the ionization energy of the matrix solids. Crucially, the use of a matrix with lower ionization energy has been found to result in efficient cleavage at N-Cα and disulfide bonds by MALDI-ISD. Therefore, electron association with the peptide rather than the fragmentation mechanism involving hydrogen atom attachment is proposed as the initial step of the MALDI-ISD process. In this mechanism, electron transfer from the reducing matrix to the peptide produces a peptide anion radical, which provides either a [cn + H]/[zm]• or [an]•/[ym + H] fragment pair. Fragmentation of the peptide anion radical strongly depends on the gas-phase acidity of the matrix used. Subsequently, the resultant fragments/radicals underwent a reaction in the MALDI plume, producing observable even-electron ions. Consequently, MALDI-ISD fragments are observed as both positive and negative ions, even though MALDI-ISD with a reducing matrix involves fragmentation of peptide anion radicals. The proposed mechanism is suitable for obtaining a better understanding of the MALDI-ISD process.


Assuntos
Hidrogênio , Peptídeos , Compostos de Anilina , Hidrogênio/química , Íons , Peptídeos/química , Fenóis , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Am Chem Soc ; 143(26): 9849-9857, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152774

RESUMO

Liquid-liquid phase separation (LLPS) of proteins and DNA has recently emerged as a possible mechanism underlying the dynamic organization of chromatin. We herein report the role of DNA quadruplex folding in liquid droplet formation via LLPS induced by interactions between DNA and linker histone H1 (H1), a key regulator of chromatin organization. Fluidity measurements inside the droplets, binding assays using G-quadruplex-selective probes, and structural analyses based on circular dichroism demonstrated that quadruplex DNA structures, such as the G-quadruplex and i-motif, promote droplet formation with H1 and decrease molecular motility within droplets. The dissolution of the droplets in the presence of additives and the LLPS of the DNA structural units indicated that, in addition to electrostatic interactions between the DNA and the intrinsically disordered region of H1, π-π stacking between quadruplex DNAs could potentially drive droplet formation, unlike in the electrostatically driven LLPS of duplex DNA and H1. According to phase diagrams of anionic molecules with various conformations, the high LLPS ability associated with quadruplex folding arises from the formation of interfaces consisting of organized planes of guanine bases and the side surfaces with a high charge density. Given that DNA quadruplex structures are well-documented in heterochromatin regions, it is imperative to understand the role of DNA quadruplex folding in the context of intranuclear LLPS.


Assuntos
DNA/química , Histonas/química , Sequência de Aminoácidos , Quadruplex G , Heterocromatina/química , Extração Líquido-Líquido , Ligação Proteica , Domínios Proteicos
10.
J Appl Crystallogr ; 54(Pt 1): 203-210, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833648

RESUMO

Many polymorphic crystal structures of copper phthalocyanine (CuPc) have been reported over the past few decades, but despite its manifold applicability, the structure of the frequently mentioned α polymorph remained unclear. The base-centered unit cell (space group C2/c) suggested in 1966 was ruled out in 2003 and was replaced by a primitive triclinic unit cell (space group P 1). This study proves unequivocally that both α structures coexist in vacuum-deposited CuPc thin films on native silicon oxide by reciprocal space mapping using synchrotron radiation in grazing incidence. The unit-cell parameters and the space group were determined by kinematic scattering theory and provide possible molecular arrangements within the unit cell of the C2/c structure by excluded-volume considerations. In situ X-ray diffraction experiments and ex situ atomic force microscopy complement the experimental data further and provide insight into the formation of a smooth thin film by a temperature-driven downward diffusion of CuPc molecules during growth.

11.
Materials (Basel) ; 13(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899342

RESUMO

Room-temperature phosphorescent (RTP) materials have been attracting tremendous interest, owing to their unique material characteristics and potential applications for state-of-the-art optoelectronic devices. Recently, we reported the synthesis and fundamental photophysical properties of new RTP materials based on benzil, i.e., fluorinated monobenzil derivative and fluorinated and non-fluorinated bisbenzil derivative analogues [Yamada, S. et al., Beilstein J. Org. Chem. 2020, 16, 1154-1162.]. To deeply understand their RTP properties, we investigated the excited-state dynamics and photostability of the derivatives by means of time-resolved and steady-state photoluminescence spectroscopies. For these derivatives, clear RTP emissions with lifetimes on the microsecond timescale were identified. Among them, the monobenzil derivative was found to be the most efficient RTP material, showing both the longest lifetime and highest amplitude RTP emission. Time-resolved photoluminescence spectra, measured at 77 K, and density functional theory calculations revealed the existence of a second excited triplet state in the vicinity of the first excited singlet state for the monobenzil derivative, indicative of the presence of a fast intersystem crossing pathway. The correlation between the excited state dynamics, emission properties, and conformational flexibility of the three derivatives is discussed.

12.
Beilstein J Org Chem ; 16: 1154-1162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550930

RESUMO

Pure organic phosphorescent molecules are attractive alternatives to transition-metal-complex-based phosphores for biomedical and technological applications owing to their abundance and nontoxicity. This article discloses the design, synthesis, and photophysical properties of fluorinated benzil and bisbenzil derivatives as potential pure organic room-temperature phosphorescent molecules. These compounds were separately converted from the corresponding fluorinated bistolanes via PdCl2-catalyzed oxidation by dimethyl sulfoxide, while nonfluorinated bistolane provided the corresponding bisbenzil derivatives exclusively in a similar manner. Intensive investigations of the photophysical properties of the benzil and bisbenzil derivatives in toluene at 25 °C showed both fluorescence with a photoluminescence (PL) band at a maximum wavelength (λPL) of around 400 nm and phosphorescence with a PL band at a λPL of around 560 nm. Interestingly, intersystem crossing effectively caused fluorinated benzils to emit phosphorescence, which may arise from immediate spin-orbit coupling involving the 1(n, π)→3(π, π) transition, unlike the case of fluorinated or nonfluorinated bisbenzil analogues. These findings offer a useful guide for developing novel pure organic room-temperature phosphorescent materials.

13.
Materials (Basel) ; 13(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340365

RESUMO

Homoepitaxial growth of organic semiconductor single crystals is a promising methodology toward the establishment of doping technology for organic opto-electronic applications. In this study, both electronic and crystallographic properties of homoepitaxially grown single crystals of rubrene were accurately examined. Undistorted lattice structures of homoepitaxial rubrene were confirmed by high-resolution analyses of grazing-incidence X-ray diffraction (GIXD) using synchrotron radiation. Upon bulk doping of acceptor molecules into the homoepitaxial single crystals of rubrene, highly sensitive photoelectron yield spectroscopy (PYS) measurements unveiled a transition of the electronic states, from induction of hole states at the valence band maximum at an adequate doping ratio (10 ppm), to disturbance of the valence band itself for excessive ratios (≥ 1000 ppm), probably due to the lattice distortion.

14.
Sci Rep ; 9(1): 14115, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575943

RESUMO

The quantum yield of graphene quantum dots was enhanced by restriction of the rotation and vibration of surface functional groups on the edges of the graphene quantum dots via esterification with benzyl alcohol; this enhancement is crucial for the widespread application of graphene quantum dots in light-harvesting devices and optoelectronics. The obtained graphene quantum dots with highly graphene-stacked structures are understood to participate in π-π interactions with adjacent aromatic rings of the benzylic ester on the edges of the graphene quantum dots, thus impeding the nonradiative recombination process in graphene quantum dots. Furthermore, the crude graphene quantum dots were in a gel-like solid form and showed white luminescence under blue light illumination. Our results show the potential for improving the photophysical properties of nanomaterials, such as the quantum yield and band-gap energy for emission, by controlling the functional groups on the surface of graphene quantum dots through an organic modification approach.

15.
Nat Mater ; 18(10): 1084-1090, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477903

RESUMO

Spin-flip in purely organic molecular systems is often described as a forbidden process; however, it is commonly observed and utilized to harvest triplet excitons in a wide variety of organic material-based applications. Although the initial and final electronic states of spin-flip between the lowest singlet and lowest triplet excited state are self-evident, the exact process and the role of intermediate states through which spin-flip occurs are still far from being comprehensively determined. Here, via experimental photo-physical investigations in solution combined with first-principles quantum-mechanical calculations, we show that efficient spin-flip in multiple donor-acceptor charge-transfer-type organic molecular systems involves the critical role of an intermediate triplet excited state that corresponds to a partial molecular structure of the system. Our proposed mechanism unifies the understanding of the intersystem crossing mechanism in a wide variety of charge-transfer-type molecular systems, opening the way to greater control over spin-flip rates.

16.
Org Biomol Chem ; 17(28): 6911-6919, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31271184

RESUMO

Herein, we prepared novel bent fluorine-containing donor-π-acceptor (D-π-A) molecules from commercially available octafluorocyclopentene using a facile two-step procedure, revealing that the above molecules absorb UV-light and exhibit yellow photoluminescence (PL) with high PL efficiencies (ΦPL) in solution. The corresponding Stokes shifts exceeded 10 000 cm-1, and the maximum PL wavelength (λPL) strongly depended on solvent polarity or intermolecular interactions in the solid state. On the basis of a Lippert-Mataga plot, PL was confidently assigned to radiative relaxation from an intramolecular charge-transfer excited state. Moreover, the synthesized luminophores showed intense PL even in the crystalline state and exhibited alkoxy chain length-dependent PL behavior (e.g., high ΦPL, λPL = 486-540 nm).

17.
J Phys Chem Lett ; 10(6): 1312-1318, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30768901

RESUMO

Strong intermolecular electronic coupling and well-ordered molecular arrangements enable efficient transport of both charge carriers and excitons in semiconducting π-conjugated molecular solids. Thus, molecular heteroepitaxy to form crystallized donor-acceptor molecular interfaces potentially leads to a novel strategy for creating efficient organic optoelectronic devices via the concomitance of these two requirements. In the present study, the crystallographic and electronic structures of a heteroepitaxial molecular interface, perfluoropentacene (PFP, C22F14) grown on pentacene single crystals (Pn-SCs, C22H14), were determined by means of grazing-incidence X-ray diffraction (GIXD) and angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), respectively. GIXD revealed that PFP uniquely aligned its primary axis along the [11̅0] axis of crystalline pentacene to form well-crystallized overlayers. Valence band dispersion (at least 0.49 eV wide) was successfully resolved by ARUPS. This indicated a significant transfer integral between the frontier molecular orbitals of the nearest-neighbor PFP molecules.

18.
J Phys Condens Matter ; 31(15): 154001, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30634171

RESUMO

Uniform and well-defined interfaces are required for clarification of fundamental processes at internal interfaces between donor and acceptor molecules constituting organic optoelectronic devices. In this study, evolution of a well-ordered molecular interface, epitaxially grown C60 on the single crystal rubrene (C42H28) surface, was accurately investigated by grazing incidence x-ray diffraction (GIXD) techniques. Contrasting to the case of C60 on the single crystal pentacene forming uniquely aligned epitaxial interfaces, coexistence of two inequivalent crystalline domains of C60 was identified on the single crystal rubrene. Nevertheless, crystallinity of C60/rubrene exhibited even more remarkable improvement to extend its in-plane average crystallite size up to 250 nm as the growth temperature was raised. Probable leading factors determining the structures and crystallinity of the well-defined molecular interfaces are discussed based on close comparison of the present results with the C60/pentacene interfaces. The techniques presented herein for enhancement of the crystallinity in epitaxial molecular interfaces are potentially applicable to development in the photoelectric power conversion efficiency of organic photovoltaics (OPVs) via improved charge carrier mobility in donor-acceptor interfaces.

19.
J Phys Condens Matter ; 31(19): 194002, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30673641

RESUMO

Energy-level alignment at organic-metal interfaces plays a crucial role for the performance of organic electronic devices. However, reliable models to predict energetics at strongly coupled interfaces are still lacking. We elucidate contact formation of 1,2,5,6,9,10-coronenehexone (COHON) to the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy, the x-ray standing wave technique, and density functional theory calculations. While for low COHON thicknesses, the work-functions of the systems vary considerably, for thicker organic films Fermi-level pinning leads to identical work functions of 5.2 eV for all COHON-covered metals irrespective of the pristine substrate work function and the interfacial interaction strength.

20.
J Org Chem ; 83(23): 14610-14616, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30376330

RESUMO

Both enantiomers of axially chiral bis(dinaphthofuran) were prepared in only two steps from 1'-hydroxy-4'-methoxy-2,2'-binaphthalenyl-1,4-dione, followed by optical resolution via high-performance liquid chromatography (HPLC) using a chiral stationary phase (CSP). The absolute configurations were determined by comparison of experimental and calculated vibrational circular dichroism (VCD) spectra. Synthetic bis(dinaphthofuran) exhibited a broad and unstructured emission derived from an intramolecular excimer in both solution and solid state. The methylene bridge brings both chromophores close to each other and induces significant changes in the photophysical behavior. Chiral bis(dinaphthofuran) displayed a bathochromic shift in emission, as compared to the racemic mixture in the solid state. Furthermore, the compounds showed high circularly polarized luminescence (CPL) with a dissymmetry factor ( glum) of 10-3 at 405 nm upon excitation at 265 nm in a methanol solution. This compound serves as a model for the design and synthesis of organic materials having CPL activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...